Integrated Micromachined Waveguide Absorbers at 220 – 325 GHz

نویسندگان

  • Bernhard Beuerle
  • James Campion
  • Umer Shah
  • Joachim Oberhammer
چکیده

This paper presents the characterization of integrated micromachined waveguide absorbers in the frequency band of 220 to 325 GHz. Tapered absorber wedges were cut out of four different commercially available semi-rigid absorber materials and inserted in a backshorted micromachined waveguide cavity for characterization. The absorption properties of these materials are only specified at 10 GHz, and their absorption behavior above 100 GHz was so far unknown. To study the effect of the geometry of the absorber wedges, the return loss of different absorber lengths and tapering angles was investigated. The results show that longer and sharper sloped wedges from the material specified with the lowest dielectric constant, but not the highest specified absorption, are superior over other geometries and absorber materials. The best results were achieved for 5 mm long absorbers with a tapering angle of 23◦ in the material RS-4200 from the supplier Resin Systems, having a return loss of better than 13 dB over the whole frequency range of 220 to 325 GHz. These absorber wedges are intended to be used as matched loads in micromachined waveguide circuits. To the best of our knowledge, this is the first publication characterizing such micromachined waveguide absorbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Very Low Loss 220–325 GHz Silicon Micromachined Waveguide Technology

This paper reports for the first time on a very low loss silicon micromachined waveguide technology, implemented for the frequency band of 220 – 325 GHz. The waveguide is realized by utilizing a double H-plane split in a three-wafer stack. This ensures very low surface roughness, in particular on the top and bottom surfaces of the waveguide, without the use of any surface roughness reduction pr...

متن کامل

Micromachined Cavity Resonator Sensors for on Chip Material Characterisation in the 220–330 GHz band

A silicon micromachined waveguide on-chip sensor for J-band (220-325 GHz) is presented. The sensor is based on a micromachined cavity resonator provided with an aperture in the top side of a hollow waveguide for sensing purposes. The waveguide is realized by microfabrication in a silicon wafer, gold metallized and assembled by thermocompression bonding. The sensor is used for measuring the comp...

متن کامل

Silicon Micromachining Technology for Passive THz Components

Silicon micromachined terahertz passive components such as silicon washers, waveguide blocks for W-band (75-110 GHz) power amplifiers, and waveguides for 325-500 GHz band have been designed, microfabricated, and characterized. Based on these results, an integrated 600 GHz silicon micromachined RadiometerOn-a-Chip (ROC) has been demonstrated for the first time. It reduced in mass by an order of ...

متن کامل

3d Silicon Micromachining – an Enabling Technology for High- Performance Millimeter and Submillimeter-wave Frequencies Reconfigurable Satellite Front-ends

This paper gives an overview on recent achievements in micromachined technology for millimeter and submillimeter-wave applications, from 130 to 750 GHz. The micromachined components presented include the first ever submillimeter-wave MEMS devices, namely a 500600 GHz 3.3 bit phase shifter and a 500-750 GHz waveguide MEMS switch, a 0.02 dB/mm loss waveguide technology for the 220-330 GHz band wi...

متن کامل

Silicon Micromachined Components at Terahertz Frequencies for Astrophysics and Planetary Applications

At the Jet Propulsion Laboratory (JPL) we are using deep reactive ion etching (DRIE) based silicon micromachining to develop the critical waveguide components at submillimeter wavelengths that will lead to highly integrated multi-pixel spectrometers, imagers, and radars. The advantage of DRIE over wet anisotropic etching is that DRIE exhibits little crystal plane dependence and therefore reduce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017